WAS IHRE KUNDEN IN ZUKUNFT NICHT MEHR HÖREN KÖNNEN? WARTESCHLEIFENMUSIK

EINE KI, DIE WEISS, WIE VIELE LEUTE IHREN SERVICE NÄCHSTE WOCHE ANRUFE

So lief es früher

Die Mitarbeitereinsatzplanung ist einer der entscheidenden Faktoren für die Qualität der Service-Hotline. Zu wenig besetzte Plätze sorgen für Wartezeiten und unzufriedene Kunden; zu viele für unnötige Kosten. Die unbekannte Grösse ist die Anzahl der Anrufe, die an einem Tag eingehen werden. Bisher überliessen Unternehmen das Schätzen dem Bauchgefühl der Verantwortlichen oder verliessen sich auf einfache Durchschnittswerte. Mit all der Unzuverlässigkeit und der schwankenden Qualität, die damit verbunden sind.

Dank kommt KI ins Spiel

Das Optimieren von Telefon-Serviceangeboten durch eine bessere Prognose der Zahl der Anrufer ist ein Auftrag, bei dem sich KI-Anwendungen wohlfühlen: grosse Datenmengen, eine klar umrissene Aufgabe – und ein einfaches Kriterium zur Erfolgsmessung: Die auf KI basierenden Schätzungen müssen besser sein als die zuvor gewählten Verfahren.

Die Datengrundlage bilden die Anruferzahlen der letzten Jahre. Auf dieser Basis sucht ein Machine-Learning-System Muster und findet Zusammenhänge zwischen der Anzahl der Anrufe und Faktoren wie Wochentag, Uhrzeit, Urlaubszeit, Feiertagen, Wetter oder Werbeaktivitäten. Die Prognose der Aktivitäten an der Service-Hotline wird laufend mit den realen Werten verglichen und die Parameter werden angepasst.

So ist es jetzt

Kunden erreichen Servicemitarbeiter schneller und klären ihre Anfragen zügiger. Dies sorgt für mehr Zufriedenheit und reduziert die Wechselwahrscheinlichkeit. Gleichzeitig bietet die Arbeitsorganisation mit Machine Learning eine verlässlichere Planungsgrundlage sowohl für die Mitarbeiter als auch für die Führungskräfte im Call-Center. Dies hilft beispielsweise bei der aufwandsorientierten Urlaubsplanung.

Schnell stellten wir fest, dass unser aller Bauchgefühl der systematischen Auswertung der vorhandenen Daten durch ein System auf Machine-Learning-Basis unterlegen ist. Wir konnten die Zuverlässigkeit unserer Prognosen in wenigen Wochen deutlich erhöhen.
Kai Völker, Vorstandsmitglied Barmenia Versicherungen
Für wen eignet sich dieser Ansatz?

Für alle Unternehmen mit umfangreich Kundenkorrespondenz

Für wen im Unternehmen ist der Anwendungsfall interessant?

Für alle Verantwortlichen rund um Marketing, Kundenservice, Vertrieb

Hintergründe für die technisch Interessierten:

Cognitive Services, Machine Learning, Logic Apps, Azure Functions


Sie haben Fragen?

Keine Webseite und keine Broschüre kann das persönliche Gespräch über Ihre Ziele und Ihre Themen ersetzen. Wir freuen uns auf einen Termin bei Ihnen vor Ort.

Kontakt

Diese Seite speichern. Diese Seite entfernen.